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Abstract

In the pursuit to comprehend the enigmatic nature of our brain, understanding opera-
tional principles of neural circuits is the main goal. The defining characteristic of any
circuit is its connectivity. Yet, investigating the physical neuron to neuron connections
in the living brain on a large scale is presently still infeasible. Thus, other methods
to learn about the connectivity of neuronal circuits are being explored, as for instance
via the neural activity. The dawn of high-density, multi-electrode implants gives hope
to record large-scale neuronal activity on the single neuron level in next decades.

Given neuronal activity recordings, the functional connectivity of a network may be
inferred from statistical correlation. The term functional connectivity separates the
connectivity found by correlation from the physical, called structural connectivity. It
may already contain the operational principles of our brain we seek to find.

Here, we evaluate the performance of a widely used functional connectivity inference
method by English et al. [2017] on small-scale networks. We generate neural activity
in silico on a known random network structure, to then evaluate the performance of
the algorithm against it.

The model used to simulate neurons is the prominent adaptive-Exponential Integrate-
and-Fire (aEIF) model by Brette et al. [2007], allowing to capture the fundamental
exponential and adapting behaviour of the action potential.

The performance of the connectivity inference algorithm is evaluated at the extrema
of synchrony of sensible network activity. Therefore an extensive parametric study
in the adaptation and conductance space of the used neuron model was conducted,
successfully identifying regimes of a- and synchronous activity.

Particular cases of very synchronous network activity lead to a poor performance of
the inference algorithm, yet this study fails to make quantitative statements aimed
for.

Further, an attempt to explore network activity and performance of the algorithm at
more neuro-physiological network topologies, namely scale-free networks is presented.

Keywords: Neuron Simulations, Functional Connectivity Inference, adaptive-Exponential
Integrate-and-Fire Model, Network Synchrony, Network Topology
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1 Introduction

We live in an age where the tools and understanding exist to manipulate the human body
at the most fundamental level, its genome. Yet, the organ defining our human nature, our
brain, and its enigmatic way of information processing are a black box still to be open
fully.
The knowledge we have already acquired about its basic unit, the neuron, and the its
information processing, have deeply inspired our current way of silicon-based computing.
It’s early descendent Machine Learning and now the dawn of Neuromorphic Computing
are already impacting our everyday. [Frady and Sommer, 2019]
Breaking the code of the brain’s information processing, has been on peoples minds since
1960 with the dawn of personal computers. With the rise of the personal computers, fic-
tional literature picked up the narrative of ’cyborgs’, or in today’s terminology the ’brain-
computer-interface’.1

In the current day, international brain science programs, such as the BRAIN Initiative [In-
sel et al., 2013, Martin and Chun, 2016], and commercial companies, as Neuralink, are
working towards visions like this and fundamental neuroscience research questions. Their
common goal is to understand the operational principles of neural circuits.
Despite advances in learning about how information is represented in the brain through
correlation or decoding analyses with relevant sensory, motor, or cognitive signals, the
circuit mechanisms that encode or transform information are still missing. ’Knowing the
wiring diagram of neuronal circuits is critical to explain how such representations are pro-
duced, predicting how the network would behave in a novel situation [...]’. [Magrans de
Abril et al., 2018]
As it is currently infeasible to identify the connections of neurons in the living brain on a
large scale, alternative ways have to be found to get the connectivity of neuronal networks.
The research field of connectivity inference from neural recording data addresses this need.
The rapidly growing availability of neural recordings through the development of high-
density, multi-electrode assays and even implants gives hope to record the needed large-
scale neuronal activity on the single neuron level in next decades to reveal the operational
principles of the brain (e.g. Multi-electrode-arrays Müller et al. [2015], Neuralink Musk
[2019]).

The aim of this study is to evaluate the performance of a prominent connectivity inference
algorithm, by English et al. [2017]. This is done by generating neuronal activity in-silico
using the well established aEIF neuron model, by Brette et al. [2007]. The main question
attempted to answer is: Does the co-activity of neurons (i.e. synchronous or asynchronous
firing) influence the performance of the inference?

This report is structures as follows: The remainder of this Section 1 will provide the main
principles of the aEIF neuron model and the connectivity inference method used in this
study. Section 2 establishes the physical network setup and explores the parametric con-
ductance and adaptation space of the aEIF model to identify regimes of a- and synchronous
activity of networks. Section 3 then investigated the impact of synchrony on the perfor-
mance of the functional connectivity inference, followed in Section 4 by the early attempt
to extend that study to differnt network topologies, namely scale-free networks. An con-
clusion and outlook is provided Section 5.

1See Google Ngrams for Cyborgs, Brain-Computer-Interface
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1.1 Background

The following is intended as a focused introduction to neuron models and connectivity
inference - familiar readers may skip.

1.1.1 Neuron Model: adaptive-Exponential Integrate-and-Fire

In the pursuit of understanding the emerging function of neurons working together in a
network, a promising approach is to simulate neurons in-silico with just enough physiolog-
ical complexity to capture the spark that makes neuronal networks so highly effective and
adaptive computational machines. Such simulations of neurons seek out to describe the
key effects governing the action potential, often discarding all other biological workings.
Detailed neuron models simulating the conductance of membranes such as Hodgkin and
Huxley [1952], capture the electrophysiological behavior of neurons in great detail but de-
termining the up to hundred or more parameters to specific neuron types poses a major
experimental challenge. [Brette et al., 2007] Hence, simplified phenomenological neuron
models of the integrate-and-fire type sacrifice biophysological exactness, yet capture ob-
served spiking behavior very well with much fewer model parameters. [Brette et al., 2007]
Because of this, integrate-and-fire neuron model are the most widely used class of models
for analyzing the behavior of neural systems. [Zhou et al., 2020] It describes the membrane
potential of a neuron in terms of the synaptic inputs and the injected current that it re-
ceives. An action potential (spike) is generated when the membrane potential reaches a
threshold, triggering a current or change in conductance to a connected neuron. A partic-
ularly successful integrate-and-fire model is the adaptive Exponential Integrate-and-Fire
(aEIF) model by Brette et al. [2007]. It successfully reproduces all major electrophys-
iological neuron classes (e.g. regular spiking, bursting, chattering) by just changing a
few parameters of the model. Its name stems from the fact that the model implements
an adaptation current, allowing for the adaptation of the neurons’ sensitivity, as well as
the implementation of the biological mechanism of hyperpolarization via an exponential
term in the membrane potential. The model is defined by two differential equations. The
first describes the dynamics of the membrane potential, including the voltage dependent
activation of sodium channels, given as

C
dV

dt
= −gL(V − EL)︸ ︷︷ ︸

leak current

+

activation of Na-channels︷ ︸︸ ︷
gL∆T exp

{
V − VT

∆T

}
−w︸︷︷︸

adaption current

input current︷︸︸︷
+I (1)

and the second describes the dynamics of the adaptation variable, w, governing the sensi-
tivity to activation as

τw
dw

dt
= a(V − EL)− w. (2)

In the above equations V and I denote the membrane voltage and input current respec-
tively. The other variables are parameters of the model as:

C membrane capacitance
gL leak conductance
EL leak reversal potential
VT spike threshold
∆T slope factor
τw adaptation time constant
a subthreshold adaptation
b spike-triggered adaptation

The first four parameters are fixed as they are intrinsic to the particular type of neuron.
The remaining parameters can be varied to achieve differnt activity patterns from regular,
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fast-spiking to bursting. A spike could be generated as follows: The input current, I,
provided by a connected excitatory neuron, leads to an increase in membrane potential,
V . If this increase is sharp enough, to overcome the counter-effects of leak current and
adaption current, the difference between membrane potential and spike threshold, (V −VT )
will lead to the exponential term becoming dominant, leading to a spike being triggered.
In practice, the evolution of the differential equations is stopped once a certain cutoff
potential, Vcut, is reached and a spike is noted at that time-point. The adaptation variable
w of the post-synaptic neuron is increased by the spike-triggered adaptation, b, leading to
a lower sensitivity to stimulus. After a set refractory period, the membrane voltage is set
to the resting potential, EL, continuing the evolution with an altered value of adaptation
current, w. A complete description of the working of the model is found in the original
paper of Brette et al. [2007].

1.1.2 Connectivity Inference: cross-correlation

The goal of functional connectivity inference in the context of neural recordings is to learn
about the connections between neurons from its recorded spiking activity.
The field focuses on the spatial scale at which connections of neurons are within a local
area, as well as their projections to other areas. This scale is called the mesoscopic scale
and is thought to be of prime importance for identifying the operational principles of neural
circuits. [Magrans de Abril et al., 2018]
Further, it is important to distinguish between several types of connectivity. Ideally, it is
the structural connectivity, the actual anatomic connections, we would like to learn about.
This is different from the functional connectivity actually obtainable from inference. The
difference is that we obtain the functional connectivity from statistical dependence among
measurements of neuronal activity and that the detection of functional connectivity does
not warrant the existence of anatomical connectivity. An example would be a false pos-
itive connection inferred between two neurons that receive common inputs from a third
neuron. Magrans de Abril et al. [2018]
Despite this technical distinction, functional connectivity is though to contain the opera-
tional principles of neuronal circuits and is hence worth obtaining. A fundamental problem
of the field is how to check the inferred functional connectivity. The common answer is
to compare the functional to the structural connectivity despite describing slightly differnt
features of the network.
The methods to compute functional connectivity are numerous. It can be computed by
correlation, various other model-free or model-based methods. The discussion of the vast
field is not topic of this study. The review by Magrans de Abril et al. [2018] provides and
excellent overview of the field.
This study did choose a model-free method, namely cross-correlation. The method com-
putes the cross-correlation between individual neurons to decide weather or not a connec-
tion exists. The particular implementation used here is introduced in English et al. [2017].
A description of the method doing it justice goes beyond the scope of this report, yet let
it be said that the core element of the method is the crosscorellogram between any two
neurons. This plot compares the frequency of spikes of neuron A in time-windows around
a spike times of neuron B. If neuron A frequently spikes shortly after neuron B it may
indicate a connection from neuron B to A. Examples of crosscorellograms can be found in
Figure 10.
This principle begs the question what happens in cases of very synchronous behaviour, i.e.
the commonly observed bursting of neuronal networks. Can cross-correlation still resolve
connections from neurons firing at once? The theoretical answer to this surely exaggerated
question must be no. Synchronous firing cannot reveal network structure as no time-lag
between spikes can suggest a directionality of synapses. The more interesting question this
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study tries to answer is how strongly the synchrony of realistic network activity actually
influences the performance of functional connectivity inference cross-correlation?

4



2 Network Setup

As connectivity inference is a highly computational discipline, requiring large resources,
and the goal was to evaluate the performance of the inference algorithm on a closed net-
work (connected within itself), a small network size was required. We thus set out to
simulate a very small neuronal network of N = 100 neurons. This small network size does
allow to simulate realistic spiking patterns as regular firing, fast firing and bursting, if some
network parameters are adjusted. This however means that the demand of physiological
realistic network parameters has to be dropped. Yet for for the purpose of evaluating the
performance of the inference algorithm that is without consequences, as all that matter
are realistic spiking activity patterns.

The neurons were mapped on network topologies generated either as a directed random
graph or scale-free graph. Random graphs, more precisely Erdős-Rényi graphs, were gen-
erated using the algorithm by Gilbert [1959], assigning an edge for all possible edges with
a probability of p = 0.02. Directed scale-free graphs were generate via the algorithm by
Bollobás et al., described in Section 4. Self-connections were forbidden, as they are physi-
ological nonsense.

We implement the two main neuron cell types found in the extracellular human brain
recordings: regular-spiking (RF) excitatory and fast-spiking (FS) inhibitory. [Peyrache
et al., 2012, Goldman et al., 2021] The cell types are defined by their excitation behaviour
as well as their spiking patters. Excitatory neurons do cause a increase in membrane po-
tential on the post-synaptic neuron. Inhibitory neurons do cause a decrease. It has been
widely observed that RS neurons are excitatory and FS neurons are inhibitory in over-
whelming quantities. [Inawashiro et al., 1999] The remainder of this report will hence refer
the two main cell types with either regular spiking or excitatory / fast-spiking or inhibitory
in synonymous usage.
All neuronal networks simulated are composed of 20% inhibitory (Ni = 20) and 80% exci-
tatory (Ne = 80) neurons following Susin and Destexhe [2021] as a realistic division.

Most network parameters for the aEIF-model were also take from Susin and Destexhe
[2021], see Table 1 or only slightly varied by trial-and-error for realistic spiking activity.
For the leak conductance, gl, as well as adaptation time constant, a, and subthreshold
adaptation, b, a parametric search was run, trying to identify the regimes of physical,
a-/synchronous spiking behaviour. Further, synaptic delays were kept at 1.5ms for all
neurons.
Upon initialization membrane potential were uniform randomly set to be within the range
of -60 and -50mV . To further cause activity of the network, initial stimulation was provided
in the from of each neuron receiving an external drive (noise). This noise was implemented
as 100 independent and identically distributed excitatory Poissonian spike trains with a
spiking frequency µExt=200Hz for the first 100 ms of the simulation. All simulations were
run for 10 s. To exclude the initialization phase from all further analysis the first 1 s of
network activity is excluded from all consecutive analysis.

All neural networks were constructed using Brian2 simulator. [Perotti et al., 2006] All
equations were numerically integrated using Euler Methods and dt = 0.1ms as integration
time step.

2.1 Conductance & Adaptation Behaviour

This section explains the reasoning and results of the parametric search conducted in the
conductance and adaptation space. The goal, as mentioned afore, of this parametric search
was to identify physical network activity at the extremes of spiking synchrony.
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symbol parameter value
used here by Susin and Destexhe

inhib./FS excit./RS inhib./FS excit./RS
C membrane capacitance [pF ] 200 200 150 150
gL leak conductance [nS] 0-80 0-80 67 6
EL leak reversal potential [mV ] -80 0 -80 0
VT spike threshold [mV ] -50 -50 -65 -65
∆T slope factor [mV ] 2.5 2.5 2 2
Tref refractory period [ms] 5 5 5 5
τw adaptation time constant [ms] 600 600 500 500
a subthreshold adaptation [nS] 0 0-85 0 4
b spike-triggered adaptation [pA] 0 0-85 0 20

Table 1: Parameters of the adaptive Exponential Integrate-and-Fire (aEIF) model by
Brette et al. [2007] for excitatory and inhibitory neurons as set by Susin and Destexhe
[2021] for regular spiking (RS) and fast spiking (FS) neurons for ’Asynchronous and Ir-
regular (AI) Networks’. Grey cells are varied through the parametric searches identifying
a-/synchronous spiking regimes

The attribute physical is here describing prolonged network activity with mean firing rates
of the network between 1-20Hz (or 1-30 see Section 2.1.2) exclusive. It shall be stressed
here that many network setups do not result in prolonged activity or have saturated firing
(fs = 1/Tref = 1/5ms = 200Hz). Trial and error exploration as well as understanding
of the neuron model lead to the conclusion that the conductance of excitatory/RS and
inhibitory/FS neurons, ge and gi respectively in this network setup were the main handles
to control the physicality. Exploration of the ge and gi space, to identify physical candidate
pairs (ge, gi) was hence set out as Stage 1 of the parametric study.

Upon identified candidates of physical leak conductances we proceed to explore network
synchrony. Therefore we vary both adaptation variables ae and be. The sub-threshold
adaptation, a, and spike-triggered adaption, b, strike as great handles of network syn-
chrony. As these both variables are zero for inhibitory/FS, a and b henceforth denote the
adaption variable of excitatory/RS neurons, i.e. dropping subscripts.
In order to identify the two desired regimes of activity, namely synchronous and asyn-
chronous, we shall here more closely define what is meant with this. Qualitatively, network
activity is here refereed to as synchronous if most neurons belong to groups of neurons that
tend to fire at the same times. As a quantitative measure of this behaviour we defined an
asynchronous network activity as by having a mean pairwise correlation of ρ̄corr < 0.1 and
a coefficient of variation of cv = σ

µ > 1. The mean correlation computed is the mean of
all N × N pairwise Pearson’s correlation coefficients between all combinations of N binned
(5ms) spike trains. The requirement of the coefficient of variation was introduced to en-
sure irregular network activity, that is thought to benefit later connectivity inference as it
quantifies the extent of variability in relation to the mean of the population.

Both stages of this parametric search were conducted using a random network topology -
randomly generated for each simulation run. Each set of parameters tested was investi-
gated with three independent simulations, i.e. replica. This was done to counter the large
statistical variation in mean network firing rates, f̄ , as well as indicators of synchrony
(cv, ρ̄corr). One source of variation is the random generation of topology. Variations in
topology for neuronal networks of this small size can already have a large effect on its
overall activity. The second source of variation is due to the statistical initial external
drive.

All network activities presented in the remainder of this section have been checked to be
active beyond the initial phase of stimulation, first 1 s of simulation time, but may go
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dormant within the 10 s of total simulation time.

This study does not claim having found the absolute extreme of synchrony of this network
setup, merely a local optima.

2.1.1 Conductance

In order to conduct this parametric study it was necessary to fix the adaptation variables
a priori to a sensible value (a, b) = (1nS, 5 pA), based on Susin and Destexhe [2021] for
’Asynchronous and Irregular Networks’. With those adaptation values the leak conduc-
tance space was explored in the order of magnitude present in current literature. [Susin
and Destexhe, 2021, Destexhe, 2009] Simulations for leak conductance, hereafter referred
to as conductance, were run for all combinations of values for excitatory and inhibitory
conductance sets Ge = [0, 5, . . . 95, 100]nS and Gi = [0, 5, . . . 95, 100]nS, i.e. the conduc-
tance space Cs = Ge × Gi. A total of 441 simulations with three replicas each, i.e. 1323
simulations were run. All variables of analysis are averaged for the replica, henceforth
referred to as replica values or with the subscript r.

Figure 1 shows the conductance space with respect to the replica mean firing frequency.
No saturation of the network is observed at this set of adaptation values - all firing rates
below 16Hz. Low excitatory conductance did show activity with low firing rates and dor-
mant networks. This is an expected observation as a certain level of mutual excitation is
necessary for network activity to persist. The striking trend visible is that medium values
(20-40)nS of excitatory conductance lead to a steep rise of replica mean firing rates, fol-
lowed by a much shallower decrease. This must indicate the surpassing of spike threshold
potential, VT . On the inhibitory conductance axis a weak trend towards higher replica
mean firing rates can be seen.

These results allow for many possible choices of conductance pairs. Here (ge, gi)=(40,
80)nS was picked. These are relatively large values that would result in relatively mono-
synaptic triggering of spikes, beneficial to the performance of functional connectivity in-
ference. Further, the choice reflects the typical dominance of inhibitory to excitatory
conductance. [Vogels and Abbott, 2005, Destexhe, 2009]

 

(a)

ge [nS]
020406080100gi [nS]

0 20 40 60 80 100

replica m
ean freq. [Hz]

0

2

4

6

8

10

12

14

16

(b)

Figure 1: Replica mean firing frequency, f̄r, over conductance space Cs at two differnt
viewing angles a) and b). Green dots are for physical simulations,i.e. f̄r of 1-20Hz.
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2.1.2 Adaptation

With chosen conductance pair Stage 2: Adaptation did explore the adaptation space com-
posed of the cartesian product of the sets A = [1, 2, . . . 84, 85]nS and B = [1, 2, . . . 84, 85] pA,
i.e Ad = A×B. This range of a and b was again chosen to explore the order of magnitude
found in the literature [Susin and Destexhe, 2021], restricting the upper bound to save
computational resources. The adaption space was hence explore with a high resolution,
leading to a total of 7396 of conditions, i.e. 22188 simulations for 3 replica.

The replica mean firing frequency, f̄r, over this adaptation space is shown in Figure 2. A
first striking feature is the absence of many conditions. These conditions did result in one
or more dormant networks and have hence been excluded from the subsequent analysis.
Secondly, low b values results in high firing rates, rapidly rising for values below b = 20 pA.
This must be the threshold that single excitation leads to the spike-triggered adaption be-
ing large enough to hinder excitation shortly after. If b, spike-triggered adaption, is hence
not above ∼ 20 pA multiple excitation are needed to make a neuron insensitive to further
excitation.
On absolute terms, the mean-firing frequency reached very high values of 160Hz, as ex-
pected for condition of no significant spike-triggered adaptation.
The conditions of particular interest, that are asynchronous conditions are found in a layer
between ∼ 22 − 40Hz. This unfortunately is outside of the prior set bounds of physical
conditions. Hence, we have to relax the conditions of physicality to 30Hz, which is still
very reasonable with the literature and far below the saturation frequency. The intersec-
tion of asynchronous and relaxed physical conditions is interestingly found along an offset
diagonal in adaptation space at ∼ 30Hz.

The distribution of active network conditions becomes visible in Figure 3a. It clearly shows
a linear trend that of active network below the trend-line with a slope of less then 1 for
x = a and y = b. This picture may be explained by recalling the oversimplified functions
of a and b: a - subthreshold adaptation: high b means quicker adaptation decay; b - spike
triggered adaptation: strength of adaptation upon spike. One could hypothesize that, a
has to cause a quick enough decay of adaptation weight, w, for a certain level of b, so that
the network doesn’t fall dormant due to prolonged periods of very high weights w.

Figure 3b does highlight the distribution of asynchronous simulations of the adaptation
space. Unfortunately, no hot-spots sought out for can be spotted, under the strict asyn-
chronous criteria set out earlier. Nevertheless, no asynchronous simulations were found
below b ∼ 13, apparently the minimum of spike-triggered adaptation needed for asyn-
chronous spiking.

A closer look at the raw averaged mean pairwise correlation, ρ̄r, and coefficient of variation
values, cv, is shown in Figure 4. Two modes of simulations seem to exist. One mode has
high correlation, ρ̄r ∼ 0.25, and low cv ∼ 0.25 and the other has the reverse at ρ̄r ∼ 0.15
and cv ∼ 1.75, judging by eye. So there is a rather step like shift from very synchronous,
regular to more asynchronous irregular network activity.

As in the binary analysis (is asynchronous + physical or not) so far, no clear candidate
or hot-spot of condition(s) has emerged, a more granular search for trends was needed.
Therefore, both axis of synchrony were inspected over the adaptation space, see Figure 5.
Figure 5a does explain why no asynchronous conditions were previously found in the low
b space. There appears to be a steep rise in coefficient of variation. A less pronounced but
still clearly visible sharp change in visible for low b in Figure 5b, where the correlation falls
of for higher b. The region around (a, b) = (∼ 25nS,∼ 20 pA) has both high coefficients
of variation and low correlation values, and is hence a favourable region.
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Figure 2: Replica mean firing frequency over the adaptation space from two differnt per-
spectives a) and b). A dot represents the average value over the three replicas for that (a,
b) condition. Asynchronous, as defined in Section 2.1 and the intersection with physical
conditions are indicated. Note the physical criteria have been extended to 1-30Hz. Dor-
mant network conditions not shown.
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Figure 3: a) Conditions in adaptation space classified as dormant (grey) if 1 out of 3 replica
did not show prolonged (after 1 s) activity, otherwise the network activity is classified
as active (orange); b) adaptation space classified as a-/synchronous (mean coefficient of
variation and pairwise correlation of replica satisfies asynchronous/irregular criteria)
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Figure 4: Active network conditions for adaptation space to measures of synchrony and
regularity of network activity. Shows a bimodal distribution and highlights asynchronous
states. CV stands for Coefficient of Variation.

a [nS] b [pA] f̄r [Hz] σ
fr

c̄v σcv ρ̄r σρ̄r

28 21 28 8 1.5 0.5 0.081 0.007
84 65 29 1 1.4 0.1 0.073 0.005

Table 2: Top two favourite adaptation conditions ranked by highest coefficient of variation
and correlation with their standard errors. All conditions for (ge, gi) = (40, 80)nS, Con-
dition in bold was selected a the most asynchronous. Errors quoted according to Hughes,
Ifan G., Hase [2010]

A ranking of conditions for highest coefficient of variation and correlation yields the two
favorite conditions, listed in Table 2. We choose (a, b) = (28nS, 21 pA) as the typical
asynchronous, irregular network activity condition, as it lies withing the region of average
high coefficient of variation see Figure 5a.

On the other extreme, that is synchronous and regular network activity, we also choose
the adaptation pair (a, b) = (5nS, 14 pA), i.e. lying in that strongly separate lower band
in Figure 5.
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(a) (b)

Figure 5: Heat-maps of both axis of network activity synchrony, regularity, i.e replica
mean pairwise correlation a) and mean coefficient of variation b) respectively, over the
adaptation space.

2.1.3 Extrema example network activities

To illustrate the actual difference in spiking pattern and how it relates to the values of
coefficient of variation and correlation of the individual spike trains an example for each
extreme of network activity is provided.
The network activity statistic are provided in Table 3. Note that the statistics and plots
presented are for a single simulation / single network - these are not averaged activities
from replicas as always before.
Figure 6 show an asynchronous and irregular network activity. Figure 7 show an syn-
chronous and regular network activity. Note that both simulations do show a higher mean
firing rate for inhibitory neuron as expected and physiologically sensible Susin and Des-
texhe [2021]

a [nS] b [pA] f̄r [Hz] c̄v ρ̄r
asynchronous, irregular 28 21 42 1.5 0.081
synchronous, regular 5 14 15 1.5 0.328

Table 3: Activity Statistics of example simulations. No standard errors calculated as these
are statistics from single simulation, nevertheless. Quoted to precision as in Table 2
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Figure 6: a) Raster plot and b) mean firing frequency of (a, b) = (28nS, 21 pA) and
(ge, gi) = (40, 80)nS as a prime example of a highly asynchronous and irregular network
activity. FS indicates fast-firing inhibitory and RS regular firing excitatory neurons.
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Figure 7: a) Raster plot and b) mean firing frequency of (a, b) = (5nS, 14 pA) and (ge, gi) =
(40, 80)nS as a prime example of a highly synchronous and regular network activity. FS
indicates fast-firing inhibitory and RS regular firing excitatory neurons.

12



3 Impact of Synchrony on Functional Connectivity Inference

This section tries to answer the question to what extend synchrony and regularity of
network activity influences functional connectivity inference with the cross-correlation al-
gorithm by English et al. [2017].
For sake of illustration, this is not only done in a quantitative manner, i.e. inspecting the
average inference performance, but also qualitatively for two extreme cases, showcasing
the core working of the cross-correlation algorithm.
For all simulations presented in the following these demands were made: networks remain
active beyond 9900ms of simulation time; at least 15 active neurons. Further, note that
the parameters of (ge, gi, a, b) of the extrema of synchrony identified in the prior section do
not guaranty synchronous or asynchronous activity, just increase their relative frequency of
occurrence. Hence, as we here do require guaranteed synchronous or asynchronous activity
for the respective (ge, gi, a, b)-condition, i.e. simulation that do not satisfy are discarded.
This statistically unproblematic, as only the network activity matters for the evaluation
of performance of the connectivity inference.

The list of parameters used for the functional connectivity inference as defined by English
et al. [2017] are listed in Table A1.

Synchrony Extrema Performance - Qualitative

In the following, the functional connectivity as been inferred for two examples networks.

Their spiking activity can be seen in Figure 8, and assures of the two extrema of synchrony
and regularity.
Their network activity statistics are shown in Table 4 and show the demanded coefficient
of variation and correlation. Note however that synchronous simulation have been found
to consistently show high mean firing rates, yet far below the saturation frequency.
The connectivity inference algorithms performance for both cases can be seen in Figure 9
in the form of receiver operating characteristic (ROC). The asynchronous, irregular net-
work activity in this case lead to a distinctly better performance with an area under the
ROC curve of AUC = 0.744, compared to the synchronous case with a AUC = 0.588.

To illustrate to core working of the cross-correlation method for connectivity inference by
English et al. [2017], selected correlogram are shown in Figure 10. See the figure caption
for details.
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Figure 8: Raster plot of network activity of example simulations at the extrema of syn-
chrony, regularity. FS indicates fast-firing inhibitory and RS regular firing excitatory neu-
rons.
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synchronous asynchronous
f̄ [Hz] 101 48
c̄v 0.5 1.8
ρ̄ 0.130 0.090

Table 4: Activity statistics of example simulations. No standard errors calculated as these
are statistics from single simulation, nevertheless. Quoted to precision as in Table 2.
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Figure 9: Receiver Operating Curves of the functional connectivity inference performed
for the two example simulations at the extrema of synchrony, regularity. The selected
threshold, i.e. the one closest to the perfect classifier on the ROC, is marked with an
orange dot.

The full results of the connectivity inference as well as the analysis of the network topol-
ogy see Appendix A. The inferred and true graphs can be found there in Figures A1
and A2. Note all graph representation in this report were drawn using the Kamada-Kawai
path-length cost-function for positioning nodes. The threshold chosen for these particular
inferred graphs was the threshold closest to the ’perfect classifier’ (i.e. (TP,FP)=(1,0)) on
the ROC curve. For a better understanding of the network topologies, degree distributions,
undirected/in/out, are shown in Figures A3 and A4.
For completeness all computed correlogram for are shown in Figure A5.
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Figure 10: Each three examples of crosscorrelograms (CCG) computed in the functional
connectivity inference performed for the two example simulations at the extrema of syn-
chrony, regularity. Asynchronous CCGs show high counts in the synchrony window.
Labels at the top indicate the neuron indices, i.e. indicating the directed edge or synapse
evaluated. The vertical dashed grey line indicated the relative time-point, t = 0, of a spike
in the pre-synaptic neuron. The black bar crosscorrelograms counts indicate the frequency
of spiking at the relative time-point in the post-synaptic neuron. The blue line is a the
frequency baseline rate, λslow, generated by the convolution of a hollow gaussian kernel
(hf = 0.6) and the CCG counts with a standard deviation of 10ms for smoothing. The
blue vertical window is the synchrony window. Counts above the frequency baseline rate
indicate a probable synapse between these two neurons. See English et al. [2017] for details
on the method.

Synchrony Extrema Performance - Quantitative

For the quantitative evaluation of the performance of the connectivity inference method 12
in-silico networks were simulated for each condition: a-/synchronous. This small number
of 24 simulations were already sufficient to draw a conclusion for this project.
The network activity characteristics for the simulation are summarized in Figure 11. A
clear difference between a- and synchronous activities is seen in the mean pairwise corre-
lation and mean coefficient of variation - as demanded by definition. Noteworthy, is the
difference in mean firing frequency. The synchronous network activities do result in much
higher mean firing rates, which is probably due to the low value of the spike-triggered-
adaptation, b, selected for synchronous simulations.
The summary of the connectivity inference ROC: Area Under the Curve is shown in Fig-
ure 12, as the main result of this study. A Welch’s test yields a p-value of p = 0.9. There
us no significant difference between the means of the two distributions. This study fails to
discover a difference is performance of the functional connectivity inference method by En-
glish et al. [2017] between a- and synchronous network activities on small-scale networks.
A significant difference was expected, especially with regard to network bursting often
observed in-vitro neural recordings.
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Figure 11: Box-plots for network activity characteristics for each 12 simulations for both
extrema of synchrony, regularity of network activity.
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16



4 Impact of Topology

Another crucial consideration for the performance of connectivity inference methods in
the neuronal network context must be the network topology. Different topologies cause
different network activities.
Neuroscience literature currently favours the network topologies: Small-World topologies
and Scale-Free networks. [Shimono and Beggs, 2014, Perotti et al., 2006, Shin and Kim,
2006]

The small-world topology is ’characterized by dense local clustering or cliquishness of con-
nections between neighboring nodes yet a short path length between any (distant) pair of
nodes due to the existence of relatively few long-range connections.’ [Bassett and Bullmore,
2006] Biologically such a resource saving topology is enticing.
The scale-free topology has a power-law connectivity distribution, and their topology and
evolution are governed by mechanisms such as preferential attachment and growth and is
hence biologically enticing.
A topology that is both small-world and scale-free is hence biologically sensible, according
to Shin and Kim [2006].

As part of this study first advances were made to implement different topologies, to then
simulate neuronal network on top and analyze their network activity. Example simulation
are shown here to showcase the functionality of the software written.
As the networks simulated here are all rather small (hence arguably small-world) we did
choose to explicitly implement a method to generate scale-free networks. The working hy-
pothesis is that a scale-free network with excitatory neurons at hubs with high out-degree
should result in very synchronous firing.

4.1 Scale-Free Networks

More formally scale-free networks are defined to have a node degree distribution, P (k),
defined by a power law:

P (k) ∝ k−γ (3)

where k is the node degree and γ the topology defining parameter.

As neuronal networks are directed graphs a further distinction between in- and out-degree
arises. Thus a network is classified separately as scale-free for in-/out- or undirected de-
gree.
The specific algorithm chosen to generate directed scale-free graphs originates from Bol-
lobás et al.. The algorithm has three main topology defining parameters. Each is a
probability of adding an edge and/or nodes. The algorithm grows a network by adding
more nodes/edged based on those three probabilities. The parameters are:

α probability for adding a new node connected to an existing node chosen randomly
β probability for adding an edge between two existing nodes chosen randomly
γ probability for adding a new node connected to an existing node chosen randomly

Further, parameters of the model are the in- and out-degree bias. All the following graphs
are generated with an in-degree bias of δin = 0.2 and no out-degree bias.

In the following, the term "scale-rich" shall be used as opposed to scale-free as a further
distinction from the random graph in the style of Li et al. [2005], yet not strictly applying
the proposed metric.
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4.2 Proof-of-Concept Simulations

Here three graphs were generated with the algorithm from Bollobás et al.. It was chosen
to vary the β parameter at the cost of α and γ to equal proportions. This results in three
graphs of we shall refer to as scale-rich, intermediate and scale-free with increasing β. The
parameters are shown in Table 5, accompanied by common network topology metrics.

random scale-rich intermediate scale-free
α - 0.35 0.25 0.1
β - 0.2 0.5 0.8
γ - 0.35 0.25 0.1
edges; edge density 200; 0.02 134; 0.013 168; 0.017 434; 0.04
mean node degree 3.86 2.68 3.36 8.68
mean clustering coefficient 0.03 0.04 0.11 0.27

Table 5: Graph generation parameters as defined by Bollobás et al. and other character-
istics.

The three graphs are shown with a random graph, as generated by Gilbert [1959], for
comparison in Figure 13. The corresponding degree distributions with gaussian and expo-
nential fits are shown in Figure 14. The variation of the β parameter has clearly lead to
more higher degree nodes with increasing β.

Raster plots of the three example neuronal network simulation run on top of those net-
work topologies are shown in Figure 15. The corresponding network activity are shown in
Table 6. Being single simulation values, no conclusions shall be drawn on their basis, yet
the analysis has been put here to emphasize the kind of investigation that could be done
in further works.

random scale-rich intermediate scale-free
mean firing frequency [Hz] 85.252 109.7 120.9 133.7
mean coefficient of variation 0.14 0.21 0.22 0.31
mean pairwise correlation 0.96 0.2 0.2 0.1

Table 6: Network activity characteristics; values of individual runs, put here do demon-
strate the analysis - high variation for each
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Figure 13: Graphs of the example simulations: a) random b) scale-rich, c) intermedi-
ate scale-free and d) most scale-free. Drawn using the Kamada-Kawai path-length cost-
function for positioning nodes. See parameters in Table 5.
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Figure 14: Networks degree distributions of the example networks generated with the
respective fits (gaussian/exponential).
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Figure 15: Raster-plots of network activity

4.3 Inhibitory Neurons as Hub Neurons

As a further step to realistic network topologies, the function to assign inhibitory neurons
to nodes of high out-degree was implemented, as thought to be the case in neuronal net-
work. Gal et al. [2021] No simulations of such kind are shown here as this feature leads to
altering the total inhibitory current applied to the network in the current implementation
- i.e. varying more than one property of the simulation at once. With slight modification
this feature allows to study the role of inhibitory neurons as hub neurons.
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5 Discussion & Conclusion

In this project a complete pipeline from generating and analyzing graph topologies, simu-
lating neuronal networks and inferring the their functional connectivity has been built. The
neuron model implemented was closely based on Susin and Destexhe [2021] "Asynchronous
and Irregular (AI) Network" implementation of the adaptive-Exponential Integrate-and-
Fire (aEIF) by Brette et al. [2007]. As the main aim of this study the performance of the
functional connectivity inference algorithm via cross-correlation by English et al. [2017]
was evaluated. Due to resource constrains, this study focused on small-scale neuronal net-
works. In an extensive parametric study of the conductance and adaptation space of the
aEIF model regimes of a-/synchronous and ir-/regular firing activity could be identified.
The inference algorithm was thence evaluated at the found extrema of network activity.
No significant difference in the performance of the inference was detected between the two
cases, with respect to the ground truth graphs generated. As no ’bursting’ networks were
observed, it is likely that the small network size and the pre-selection of the "Asynchronous
and Irregular (AI) Network" parameters by Susin and Destexhe [2021] already predispo-
sitioned all our networks to be more asynchronous and irregular, leaving little difference
between the two extrema compared in this study. Future studies should try larger networks
evaluating a larger parametric space - both limited here by resources.

The parametric study conducted provides valuable insights and intuition of the workings
of the aEIF model, as a side product.

The latter part of this study suggests further advances towards implementing more neuro-
physiological network topologies. As as showcase, example network activities of scale-free
neuronal networks are shown with appropriate metrics, as guidance of future works.

For the systematic advancement in computational neuroscience, benchmarks of functional
connectivity inference are needed to make novel findings comparable. This research project
attempted this and shows some of the complexity of this task.

————————–
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Appendices

Appendix A Full Results of Synchrony - Connectivity Infer-
ence

binsize [ms] 1e-3
hollow fraction, hf .6
gaussian kernel standard deviation 0.01
synchrony window [ms] 0, 5e-3
inspection window, τCCG [ms] 20e-3

Table A1: Functional connectivity inference algorithm via cross-correlation parameters use
as defined by English et al. [2017].
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Figure A5: All crosscorrelograms for both cases.
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Appendix B Source Code

The simulation and analysis code of this project can be found online:

https://github.com/gordonkoehn/nexus

The code allows for easy modification of network and model parameters and includes the
code for the scale-free topology generation.

For further instructions of usage see the README in the repository or contact the author
of this report.
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